Inequalities among Differences of Gini Means and Divergence Measures
نویسنده
چکیده
In 1938, Gini [3] studied a mean having two parameters. Later, many authors studied properties of this mean. In particular, it contains the famous means as harmonic, geometric, arithmetic, etc. Here we considered a sequence of inequalities arising due to particular values of each parameter of Gini’s mean. This sequence generates many nonnegative differences. Not all of them are convex. We have studied here convexity of these differences and again established new sequences of inequalities of these differences. Considering in terms of probability distributions these differences, we have made connections with some of well known divergence measures.
منابع مشابه
Refinement of Gini-Means Inequalities and Connections with Divergence Measures
In 1938, Gini [3] studied a mean having two parameters. Later, many authors studied properties of this mean. It contains as particular cases the famous means such as harmonic, geometric, arithmetic, etc. Also it contains, the power mean of order r and Lehmer mean as particular cases. In this paper we have considered inequalities arising due to Gini-Mean and Heron’s mean, and improved them based...
متن کاملInformation Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملSeven Means, Generalized Triangular Discrimination, and Generating Divergence Measures
Jensen-Shannon, J-divergence and Arithmetic-Geometric mean divergences are three classical divergence measures known in the information theory and statistics literature. These three divergence measures bear interesting inequality among the three non-logarithmic measures known as triangular discrimination, Hellingar’s divergence and symmetric chi-square divergence. However, in 2003, Eve studied ...
متن کاملNested Inequalities Among Divergence Measures
In this paper we have considered an inequality having 11 divergence measures. Out of them three are logarithmic such as Jeffryes-Kullback-Leiber [4] [5] J-divergence. Burbea-Rao [1] Jensen-Shannon divergence and Taneja [7] arithmetic-geometric mean divergence. The other three are non-logarithmic such as Hellinger discrimination, symmetric χ−divergence, and triangular discrimination. Three more ...
متن کاملSeven Means, Generalized Triangular Discrimination, and Generating Divergence Measures
Abstract From geometrical point of view, Eve [2] studied seven means. These means are Harmonic, Geometric, Arithmetic, Heronian, Contra-harmonic, Root-mean square and Centroidal mean. We have considered for the first time a new measure calling generalized triangular discrimination. Inequalities among non-negative differences arising due to seven means and particular cases of generalized triangu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1105.5802 شماره
صفحات -
تاریخ انتشار 2011